(от греч. problema — преграда, трудность, задача) — вопрос или целостный комплекс вопросов, возникший в ходе познания. Не каждая П., однако, сразу же приобретает вид явного вопроса, так же как не всякое исследование начинается с выдвижения П. и кончается ее решением. Иногда П. формулируется одновременно с ее решением, случается даже, что она осознается только через некоторое время после ее решения. Зачастую поиск П. сам вырастает в особую П. В широком смысле проблемная ситуация — это всякая ситуация, теоретическая или практическая, в которой нет соответствующего обстоятельствам решения и которая заставляет поэтому остановиться и задуматься. От П. принято отличать псевдопроблемы — вопросы, обладающие лишь кажущейся значимостью и не допускающие сколь-нибудь обоснованного ответа. Между П. и псевдопроблемами нет, однако, четкой границы. Из многочисленных факторов, оказывающих влияние на способ постановки П., особое значение имеют, во-первых, характер мышления той эпохи, в которую формируется и формулируется П., и, во-вторых, уровень знания о тех объектах, которых касается возникшая П. Каждой исторической эпохе свойственны свои характерные формы проблемных ситуаций; в древности П. ставились иначе, чем, скажем, в средние века или в современной науке. В хорошо проверен- ной и устоявшейся научной теории проблемные ситуации осознаются по-другому, чем в теории, которая только складывается и не имеет еще твердых оснований. Основы логико-семантического истолкования П. были заложены в работах математика А. Н. Колмогорова (1903-1985), С. К. Клини и др. Согласно Колмогорову, возможна логика, систематизирующая схемы решения задач. Понятия «задача» и «решение задачи» принимаются в качестве исходных; логические задачи истолковываются как операции, позволяющие получать новые задачи из уже имеющихся задач. (А и В) означает задачу: решить обе задачи А и В; (А или В) — решить хотя бы одну из задач A, В; (если А, то В) означает задачу: свести задачу В к задаче A; (не-А) означает задачу: предположив, что дано решение A, прийти к противоречию. Одной из форм П. является неразрешимая П.: ее «решением» выступает доказательство ее неразрешимости. Напр., разрешения П. для логики предикатов первого порядка неразрешима: не существует эффективной процедуры, которая позволяла бы для всякой формулы определить, является она теоремой или нет. Доказательство этого факта, данное в 1936 г. амер. логиком А. Чёрчем (р. 1903), дало первый пример неразрешимой П.
|