- класс языковых выражений, взаимная замена которых в предложении сохраняет его грамматический статус, т. е. предложение остается предложением. Если, напр., в предложении «Волга впадает в Каспийское море» слово «Волга» мы заменим словом «Нева», то получим хотя и ложное, но все-таки предложение. Это означает, что слова «Волга» и «Нева» принадлежат одной С.к. Но если вместо слова «Волга» мы поставим слово «меньше», то у нас окажется бессмысленный набор слов, следовательно, слова «Волга» и «меньше» принадлежат разным С. к. Наиболее известную систему С. к. разработал польский логик К. Айдукевич (1890—1963). Исходными категориями его системы являются категории собственных имен (n) и высказываний (s). Предполагается, что каждое правильно построенное выражение языка может быть расчленено на функтор и его аргументы. Категория функтора определяется как дробь, в знаменателе которой стоят категории аргументов, а в числителе - категория выражения, образующегося в результате сочленения функтора с аргументами. Напр., к какой С. к. принадлежит одноместный предикат «...бел»? Его единственным аргументом является некоторое имя, категория которого помещается в знаменателе дроби; в результате соединения предиката с именем получается предложение, категория которого помещается в числителе дроби, получается . С. к. двухместного предиката, скажем, «больше», будет выглядеть так: . Логические связки можно рассматривать как функторы, применяемые к предложениям, причем в результате опять получается предложение. Т. о., категория бинарной связки, скажем, «или», «если, то» и т. п., будет выглядеть так: . Теория С. к. служит основой для классификации формализованных языков и определения важных семантических понятий, например понятия истины.
|